Gaussian Beam
This example initializes a Gaussian beam distribution.
Run
This example can be run either as:
Python script:
python3 inputs_test_3d_gaussian_beam_picmi.pyorWarpX executable using an input file: (TODO)
For MPI-parallel runs, prefix these lines with mpiexec -n 4 ... or srun -n 4 ..., depending on the system.
Listing 43 You can copy this file from
Examples/Tests/gaussian_beam/inputs_test_3d_gaussian_beam_picmi.py.#!/usr/bin/env python3
# from warp import picmi
import argparse
from pywarpx import picmi
parser = argparse.ArgumentParser(description="Gaussian beam PICMI example")
parser.add_argument(
"--diagformat",
type=str,
help="Format of the full diagnostics (plotfile, openpmd, ascent, sensei, ...)",
default="plotfile",
)
parser.add_argument(
"--fields_to_plot",
type=str,
help="List of fields to write to diagnostics",
default=["E", "B", "J", "part_per_cell"],
nargs="*",
)
args = parser.parse_args()
constants = picmi.constants
nx = 32
ny = 32
nz = 32
xmin = -2.0
xmax = +2.0
ymin = -2.0
ymax = +2.0
zmin = -2.0
zmax = +2.0
number_sim_particles = 32768
total_charge = 8.010883097437485e-07
beam_rms_size = 0.25
electron_beam_divergence = -0.04 * constants.c
em_order = 3
grid = picmi.Cartesian3DGrid(
number_of_cells=[nx, ny, nz],
lower_bound=[xmin, ymin, zmin],
upper_bound=[xmax, ymax, zmax],
lower_boundary_conditions=["periodic", "periodic", "open"],
upper_boundary_conditions=["periodic", "periodic", "open"],
lower_boundary_conditions_particles=["periodic", "periodic", "absorbing"],
upper_boundary_conditions_particles=["periodic", "periodic", "absorbing"],
warpx_max_grid_size=16,
)
solver = picmi.ElectromagneticSolver(
grid=grid, cfl=1.0, stencil_order=[em_order, em_order, em_order]
)
electron_beam = picmi.GaussianBunchDistribution(
n_physical_particles=total_charge / constants.q_e,
rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size],
velocity_divergence=[
electron_beam_divergence,
electron_beam_divergence,
electron_beam_divergence,
],
)
proton_beam = picmi.GaussianBunchDistribution(
n_physical_particles=total_charge / constants.q_e,
rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size],
)
electrons = picmi.Species(
particle_type="electron", name="electrons", initial_distribution=electron_beam
)
protons = picmi.Species(
particle_type="proton", name="protons", initial_distribution=proton_beam
)
field_diag1 = picmi.FieldDiagnostic(
name="diag1",
grid=grid,
period=10,
data_list=args.fields_to_plot,
warpx_format=args.diagformat,
)
part_diag1 = picmi.ParticleDiagnostic(
name="diag1",
period=10,
species=[electrons, protons],
data_list=["weighting", "momentum"],
warpx_format=args.diagformat,
)
sim = picmi.Simulation(
solver=solver,
max_steps=10,
verbose=1,
warpx_current_deposition_algo="direct",
warpx_use_filter=0,
)
sim.add_species(
electrons, layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles)
)
sim.add_species(
protons, layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles)
)
sim.add_diagnostic(field_diag1)
sim.add_diagnostic(part_diag1)
# write_inputs will create an inputs file that can be used to run
# with the compiled version.
# sim.write_input_file(file_name = 'inputs_from_PICMI')
# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()
Note
TODO: This input file should be created following the inputs_test_3d_gaussian_beam_picmi.py file.
Analyze
Note
This section is TODO.
Visualize
Note
This section is TODO.